d.

‘-
i

2

ACCELERATING PRODUCTIVITY IN
SOFTWARE TESTING WITH AI-FIRST
APPROACHES

ACCLERZTECH

© 2025 Acclero Technologies Pvt Ltd

Accelerating Productivity in Software Testing with Al-First Approaches — White Paper by AccleroTech

REFERENCES
1. CONSORTIUM FOR IT SOFTWARE QUALITY (CISQ), (COST OF POOR SOFTWARE QUALITY IN THE US, 2020)

2. HARNESS, 2024 SOFTWARE FAILURE SENTIMENT REPORT (52% OF US CONSUMERS DIRECTLY IMPACTED BY OUTAGES;
50% REPORT LOSS OF TRUST IN COMPANIES AFTER FAILURES)

3. CAPGEMINI& SOGETIWORLD QUALITY REPORT (2010—2015 DATA) — (QA BUDGET AS PERCENTAGE OF IT SPEND RISING
FROM 18% TO 35%)

4. CAPGEMINI, SOGETI, AND OPENTEXT. WORLD QUALITY REPORT 2023-24. OCTOBER 2024. (PRESS RELEASE: "68% OF
ORGANIZATIONS NOW UTILIZING GEN AI TO ADVANCE QUALITY ENGINEERING.")

5. CAPGEMINI AND MICRO FOCUS. WORLD QUALITY REPORT 2021-22. 2022. (SURVEY FINDINGS ON AI ADOPTION AND
PRODUCTIVITY GAINS IN QUALITY ENGINEERING.)

6. COPILOT4DEVOPS. “Al TEST CASE GENERATION: TOP TOOLS, BENEFITS, CASE STUDY.” COPILOT4DEVOPS BLOG, 2023.
(CASE STUDY SHOWING 100 HOURS/$6000 SAVED BY AI-GENERATED TEST CASES FOR 100 USER STORIES.)

7. ATLASSIAN COMMUNITY. “6 AI-POWERED TESTING TOOLS FOR JIRA.” ATLASSIAN APP CENTRAL, APRIL 9, 2025.
(OVERVIEW OF MARKETPLACE APPS THAT GENERATE TEST CASES AND AUTOMATE TESTING USING Al WITHIN JIRA))

8. CIRCLECI - E. ANWAR. “USE AI TO RESOLVE CI TEST FAILURES WITH ZERO GUESSWORK." CIRCLECI BLOG, MAY 1, 2025.
(DISCUSSION OF AI TECHNIQUES TO AUTOMATICALLY CLASSIFY AND TROUBLESHOOT CONTINUOUS INTEGRATION TEST
FAILURES IN A CI/CD PIPELINE))

© 2025, Acclero Technologies Pvt Ltd

Commissioned by Co-Authored by

Acclero Technologies Pvt Ltd (AccleroTech) Nadeem Khan, Chief Architect LinkedIn
www.acclerotech.com Bhupendra Chepe, Head of Research LinkedIn
info@acclertotech.com Nilesh Pathak, Head of Delivery Linkedin

LEGAL DISCLAIMER: THE INFORMATION CONTAINED IN THIS WHITE PAPER IS PROVIDED FOR GENERAL INFORMATIONAL
PURPOSES ONLY AND IS NOT INTENDED AS LEGAL, FINANCIAL, OR PROFESSIONAL ADVICE. ACCLEROTECH MAKES NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, ABOUT THE COMPLETENESS OR ACCURACY OF THE
INFORMATION. ANY ACTION YOU TAKE BASED ON THE CONTENT OF THIS DOCUMENT IS STRICTLY AT YOUR OWN RISK.
ACCLEROTECH WILL NOT BE LIABLE FOR ANY LOSSES OR DAMAGES IN CONNECTION WITH THE USE OF THIS WHITE PAPER.
ALL PRODUCT AND COMPANY NAMES MENTIONED HEREIN ARE TRADEMARKS OR REGISTERED TRADEMARKS OF THEIR
RESPECTIVE OWNERS. REFERENCE TO ANY THIRD-PARTY PRODUCTS OR SERVICES IS FOR ILLUSTRATIVE PURPOSES ONLY
AND DOES NOT CONSTITUTE AN ENDORSEMENT OR RECOMMENDATION BY ACCLEROTECH.

© 2025 Acclero Technologies Pvt Ltd Page 2 of 13

http://www.acclerotech.com/
mailto:info@acclertotech.com
https://www.linkedin.com/in/nadeem-khan-62875a20/
https://www.linkedin.com/in/bhupendra-chepe/
https://www.linkedin.com/in/nileshpathak2001/

Accelerating Productivity in Software Testing with Al-First Approaches — White Paper by AccleroTech

EXECUTIVE SUMMARY

Poor software quality is extremely costly, both in direct financial terms and in harder-to-measure intangible
ways. Studies have quantified the economic damage of software failures and defects: for example, in the
United States alone, software bugs and failures resulted in an estimated $2.08 trillion of losses in

2020. Surveys from 2024 show that 52% of US consumers are directly impacted by such outages and about
50% of them report loss of trust in companies after such failures.

And hence, software testing is a major investment for organizations worldwide, consuming substantial time,
resources, and budget. Industry surveys show that QA and testing activities account for a significant portion of
IT spend - rising from around 18% of IT budgets in 2010 to roughly 35% by mid-2010s as software quality
became a higher priority. In practical terms, this means nearly one-third of software development effort
globally is dedicated to testing.

The financial scope is enormous: the software testing market (tools, services, and labor) was valued at ~$50
billion USD in 2023 and continues to grow annually. Large enterprises often employ hundreds or thousands of
QA engineers, and development teams collectively spend millions of hours on test design, execution, and
defect fixing each year. This worldwide effort is driven by the need to ensure software reliability, security, and
performance before release. Yet despite this heavy investment, testing often remains a bottleneck in delivery
timelines, indicating that efficiency has ample room for improvement.

This whitepaper highlights how artificial intelligence and machine learning can “Accelerate Productivity” at
nearly every stage of the software testing lifecycle — from creating test cases out of thin air (user stories) to
keeping those tests in lockstep with change, to writing and maintaining the code that runs them, and finally to
deciphering test results. The purpose of this whitepaper is to provide a blueprint for engineering leaders and
QA practitioners on how to utilize Al-first approaches in testing to reduce manual effort, shorten release cycles,
and cut costs. It emphasizes the urgent need for faster and more intelligent testing processes in today's fast-
paced software environment, particularly within the BFSI sector, where rigorous testing is essential due to
complex systems and regulations.

In short, this whitepaper shows different ways to achieve the equation, Al-First Testing = High-Speed, High-
Quality Software Delivery. This results in...

e Accelerating Productivity Gains with reduction in efforts and shorter schedules

e Significant Cost Reduction in team efforts and tool licenses

e Improved Quality and Coverage for complex and large regression suites

e Increased Agility and Future-Readiness of the team as well as practices followed by the team

e Higher team Morale & Innovation as the engineers can re-double focus on higher cognition pursuits

© 2025 Acclero Technologies Pvt Ltd Page 3 of 13

Accelerating Productivity in Software Testing with Al-First Approaches — White Paper by AccleroTech

Glossary

Al-First Approach: A methodology that prioritizes the use of artificial intelligence in processes to enhance
productivity and efficiency.

Behavior-Driven Development (BDD): A software development process that involves creating simple scenarios
on how an application should behave from the end user's perspective.

Continuous Integration (Cl): A development practice where developers integrate code into a shared repository
frequently, leading to multiple integrations per day.

Generative Al: A type of artificial intelligence that can generate new content, such as text, images, or code,
based on the data it has been trained on.

Large Language Model (LLM): A type of artificial intelligence model that is trained on vast amounts of text
data to understand and generate human language.

Machine Learning (ML): A subset of artificial intelligence that involves the use of algorithms and statistical
models to enable computers to improve their performance on a task through experience.

Natural Language Processing (NLP): A field of artificial intelligence that gives machines the ability to read,
understand, and derive meaning from human languages.

Regression Testing: A type of software testing that ensures that recent code changes have not adversely
affected existing features.

Self-Healing Scripts: Automation scripts that can automatically adjust to changes in the application under
test, such as changes in Ul elements or workflows.

Semantic Mapping: A technique that involves mapping data to a semantic model to ensure consistency and
understanding across different systems.

Test Automation: The use of special software to control the execution of tests and compare the actual
outcomes with predicted outcomes.

Flaky Test Failures: Test failures that occur inconsistently, often due to timing issues, environment conditions,
or other non-deterministic factors.

Compute: Refers to the computational power required to perform tasks, often measured in terms of
processing speed, memory usage, and efficiency.

Traceability Matrix: A tool used to ensure that all requirements defined for a system are tested in the test
protocols. It maps and traces user requirements with test cases.

Knowledge Graph: A structured representation of knowledge that enables reasoning and querying over
complex data relationships.

NLP Parsing: The process of analyzing and extracting meaningful information from natural language text
using algorithms and models.

© 2025 Acclero Technologies Pvt Ltd Page 4 of 13

Accelerating Productivity in Software Testing with Al-First Approaches — White Paper by AccleroTech

WHITE PAPER

1. About AccleroTech

AccleroTech is a pioneering Al-First software solutions company on a mission to “Accelerate Productivity” for
global businesses. We specialize in infusing artificial intelligence into every facet of software engineering to
deliver smarter, faster, and more cost-effective outcomes. Our mantra — Accelerating Productivity with Al-First
Solutions — drives us to constantly innovate and adopt cutting-edge, open-source technologies that future-
proof our clients’ software development lifecycle. By leveraging Al and automation, we reduce costs, save
time, and boost quality for our customers, all while staying true to our ethos of openness, security, and
collaboration. AccleroTech’s expertise spans Agile Quality Engineering, intelligent automation, and the
Microsoft Power Platform, all united by an Al-driven mindset. We pride ourselves in empowering teams (our
own and our clients) with Al tools and Al-trained talent to achieve results that were previously unimaginable.

Since our inception, we have helped organizations (especially in the Banking, Financial Services, and Insurance
— BFSI — sector) transform their software testing and QA processes. We always choose an Al-First approach:
from automated test design to self-healing test execution, we harness Al to do the heavy lifting so that human
engineers can focus on higher-value activities. What sets AccleroTech apart is not only our technical prowess,
but also our commitment to open-source, future-proof approaches. We believe in using open platforms and
frameworks to avoid vendor lock-in and keep costs down, while delivering scalable solutions that stand the
test of time. In short, AccleroTech accelerates software quality and productivity by uniting human innovation
and artificial intelligence.

2. Why We Wrote This Whitepaper?

In today’s fast-paced software world, quality assurance can no longer afford to be a bottleneck. Testing must
be fast, intelligent, and cost-effective. We at AccleroTech prepared this whitepaper to share our Al-driven
blueprint for turbocharging software testing productivity. Our goal is to show engineering leaders and QA
practitioners how an Al-First approach in testing can dramatically reduce manual effort, shorten release
cycles, and cut costs - all using readily available technology (often open-source).

This whitepaper is part of AccleroTech’s thought leadership on “Accelerating Productivity”. We chose to focus
on software testing because it's a domain ripe for disruption through Al. Traditional testing is labor-intensive,
slow, and expensive — challenges that are acute in the BFSI sector where complex systems and stringent
regulations demand extensive testing. By adopting Al and machine learning in strategic parts of the testing
lifecycle, organizations can achieve more with less. Our clients have asked: How can we keep up with rapid
development without sacrificing quality? How do we reduce testing costs while covering ever-growing
requirements? We believe Al is the answer.

This document consolidates our research and hands-on experience with Al in testing. We delve into five key
use cases in the testing process where Al can make a game-changing impact (from generating tests from
requirements to analyzing test failures). For each, we outline practical approaches — emphasizing open-source
tools and techniques that don't require hefty licensing fees — that deliver measurable improvements in speed

© 2025 Acclero Technologies Pvt Ltd Page 50f 13

Accelerating Productivity in Software Testing with Al-First Approaches — White Paper by AccleroTech

and productivity. We also provide real-world examples, especially in BFSI, to demonstrate how these
approaches work in practice and the kind of benefits they yield.

Why now? Because Al in QA has moved from theory to reality. Industry reports show that organizations are
embracing Al in quality engineering at an unprecedented rate. According to the World Quality Report 2024, 68%
of organizations are now utilizing generative Al to advance quality engineering, with test automation being
the top area of impact. In our own projects, we have seen Al reduce test creation effort by over 50% and
maintenance effort by as much as 80%. By sharing these insights, AccleroTech aims to help more
organizations ride this wave and navigate the practical steps to implement Al in their testing process.

In short, we wrote this whitepaper to educate and inspire: to show what'’s possible with an Al-First approach to
testing, to highlight the productivity gains and cost savings, and to cement the idea that the future of testing is
not just faster or cheaper - it's smarter. With this knowledge, we hope your organization can embark on its
own journey to create a high-velocity, Al-augmented testing practice. AccleroTech stands ready as a partner in
this journey, and in the following pages, you'll discover why.

3. Al-First Software Testing Use Cases

In this whitepaper, we explore five critical use cases in software testing where Al can be applied to
significantly enhance productivity and efficiency. These use cases represent common challenges faced during
the testing lifecycle, and for each, we present Al-centric solutions. Below is an overview of the Use Cases
covered:

Use Case 1: User Story to BDD Feature File Generation — Using Al to convert requirements (user stories)
directly into Behavior-Driven Development (BDD) scenarios. This addresses the challenge of creating test
cases from specs, accelerating the test design phase.

Use Case 2: Maintenance of Regression BDD Files — Applying Al to keep existing BDD feature files in sync with
evolving user stories and requirements. The goal is to automate test case updates as software behavior
changes, preserving alignment with current functionality.

Use Case 3: BDD Feature File to Ul Automation Script Generation — Leveraging Al to generate actual Ul test
automation scripts from BDD scenarios. This deals with writing the code (e.g., Selenium, Appium scripts) for
tests, dramatically speeding up the automation implementation.

Use Case 4: Maintenance of Automated Test Scripts — Using Al to maintain and update test scripts when the
application under test changes or when BDD scenarios are modified. This includes self-healing tests and
intelligent refactoring to reduce the maintenance burden over time.

Use Case 5: Automation Test Failure Analysis (Al/ML) — Deploying Al/ML to analyze test execution results
and failures. This involves clustering failure patterns, pinpointing root causes, and even predicting failures,
thereby making triage faster and more effective.

Each use case corresponds to a stage in the testing process: from design (use cases 1 and 2) to development
of tests (3 and 4) to execution and analysis (5). By addressing all these stages, an organization can build an
end-to-end Al-augmented testing pipeline. Importantly, these use cases are modular — you can adopt one or
two to start (whatever solves your most pressing issues), and then gradually implement others to compound
the benefits.

© 2025 Acclero Technologies Pvt Ltd Page 6 of 13

Accelerating Productivity in Software Testing with Al-First Approaches — White Paper by AccleroTech

In the next sections, we dive into the details of each use case. For every use case, we outline the key
challenge, the Al-First solution, and suggest multiple approaches you can take. We also provide a
comparative table for each use case, summarizing how, for each use case, the approaches stack up with each
other based on various parameters. For each of the use cases, we have also included some insights that will
help you evaluate which approaches align best with your organization’s needs and capabilities.

4. Use Case 1. User Story to BDD Feature File Generation

Challenge: Writing test scenarios from scratch based on user stories or requirements can be slow and
inconsistent. Often, business analysts create user stories, and QA must manually translate them into BDD
feature files (using Gherkin syntax with Given/When/Then). This manual step can lag behind, causing testing
to start late, and may result in missing or misunderstood scenarios.

Al-First Solution: Use Natural Language Processing (NLP) and Generative Al to automatically generate BDD
feature files from user story text. This ensures immediate creation of test scenarios as soon as requirements
are available, jump-starting the testing process and enforcing consistency.

Suggested Approaches:

Each of these approaches can drastically reduce the manual effort of test scenario creation, but they differ in
setup effort, flexibility, and long-term payoff. The table below compares them:

Approach Initial Effort Speed of Output Future-Proofing
Template NLP Moderate — Instant generation Low (open- Good for‘ consistent story

: create & tune source patterns; needs updates if
Parsing o after setup. L

rules initially. libraries). story style changes.
I Low — quick to Instant on-demand Low (use local nghly adeptable to any
e set up prompts (seconds/story) open model) PUITERTIE) [TEaEs &8
Generation P prompis. Y): P ' models evolve.
Custom- High — data prep Medium Excellent alignment with
Trained ML & training Instant after training. | (compute for domain; model learns &
Model needed. training). improves with more data.
Semantic Moderate — set . LO.W (uses Levera_geg proven .
. Instant suggestions. | existing scenarios; very effective as
Reuse up search index. .
assets). repository grows.

Insights: If your team has very well-structured requirements and limited upfront Al expertise, NLP Parsing
(Approach 1) might be a quick win. If you want out-of-the-box results and have the compute, Generative LLM
(Approach 2) offers fast benefits. For large organizations with lots of historical data, investing in a Custom Model
(Approach 3) or Semantic Reuse system (Approach 4) will yield compounding returns and capture domain
wisdom. In practice, a combination can be used (e.g., use Approach 4 first to get scenarios, then Approach 2 to fill
any gaps). All approaches are feasible with open-source tech, allowing you to experiment without heavy costs.

© 2025 Acclero Technologies Pvt Ltd Page 7 of 13

Accelerating Productivity in Software Testing with Al-First Approaches — White Paper by AccleroTech

5. Use Case 2: Maintenance of Regression BDD Feature Files

Challenge: Over a product’s life, requirements change — and tests must change with them. In BDD, that means
feature files need updates when user stories are modified or when acceptance criteria evolve. Manually
hunting through dozens of feature files to adjust steps, add new scenarios, or remove obsolete ones is error-
prone and time-consuming. Often some tests fall out-of-sync, leading to outdated tests that either fail
unnecessarily or miss covering new logic. Particularly in BFSI, frequent policy or regulation changes can make
maintaining test cases a daunting ongoing task.

Al-First Solution: Use Al to automatically detect changes in requirements and propagate those changes to the
BDD feature files. The idea is to keep the test specification “living” alongside the requirements. Approaches
include intelligent differencing, natural language updates using LLMs, traceability matrices with Al, and
knowledge-driven rule updates. These ensure that as your application changes, your BDD scenarios update
semi-autonomously, preserving the integrity of your regression suite with minimal manual effort.

Suggested Approaches:

Approach

Maintenance Cost

Setup Effort

Handling Changes

Adaptability

Change Automated, for Adapts quickly to
g. defined change Low — once built, Adapts q y)
Detection Moderate) . incremental changes; needs
. types (values, little ongoing cost.
Scripts o new rules for new patterns.
additions).
: On-demand natural | Low-Med — minimal | Highly adaptable to varied
LLM-Assisted] . ghly adap . .
. Low language updates; aside from model changes in wording or logic;
Refactoring) . .
very flexible. usage. relies on Al quality.
. . Very adaptive — catches
Al Traceability AUtO |dent|f|es‘ Low — mostly anything linked semantically;
. Moderate impacted tests; . .
Matrix o automated alerts. requires maintaining trace
suggests additions. :
links.
Knowledge Systematically Med - needs up- Extremely adaptable to‘
. ensures all rules complex logic changes;
Graph High) keep of rules -
. have tests; powerful future-proof but initial
Reasoning : model.
logic. overhead.

Insights: For teams starting out, LLM assistance (Approach 2) offers a quick boost in ease of updating tests,
especially for textual or value changes, with minimal setup. Automated differencing (Approach 1) is great for
straightforward rule updates (like thresholds, optional steps) and is easy to implement incrementally (start with
the most common change types). Larger enterprises with established processes may benefit from Al traceability
(Approach 3) to enforce coverage, and those in heavily rule-driven environments (like banks or insurers) could
consider the knowledge graph (Approach 4) for a long-term robust solution. Often, a combination is ideal: e.g.,
use traceability to identify changes and LLM to execute the updates. All approaches share a common benefit -
they significantly reduce the manual labor and delay in updating tests when requirements change, thus keeping
regression suites reliable and relevant.

© 2025 Acclero Technologies Pvt Ltd

Page 8 of 13

Accelerating Productivity in Software Testing with Al-First Approaches — White Paper by AccleroTech

6. Use Case 3: BDD Feature File to Ul Automation Test Script Generation

Challenge: Writing the actual automation code to execute test scenarios on the application’s Ul is a labor-
intensive step. Testers or developers must write step definitions or scripts (in Selenium, Cypress, etc.)
corresponding to each BDD step. This can be slow, especially when dealing with a large number of scenarios.
It often involves repetitive coding (e.g., locating Ul elements, performing clicks and data entry, asserting
results). For teams practicing BDD, the lag between having scenarios ready and getting runnable automated
tests can impede continuous testing. Moreover, inconsistencies or human errors in script writing can introduce

flakiness.

Al-First Solution: Automatically generate the Ul test scripts from the BDD feature files using Al, drastically
reducing the time needed to have executable tests. Essentially, let Al be the translator from plain-language
scenarios to code. By doing so, teams can move from “Given/When/Then” written in English to actual test
execution much faster, enabling a near real-time testing pipeline from requirements to results.

Suggested Approaches:

Dev Effort

Approach

Structured NLP
to Code

Medium (one-
time template

Automation Speed-Up

Very High (bulk code
generation in seconds).

Maintainability

Good (consistent
code, but update
templates if app

Maturity

Proven — in use in many
BDD frameworks via

runs itself).

upkeep).

creation). changes). plugins.
. Fair (review N
Generative Al SIEENIT, Very High (Al writes needed; code Emerglng iz
. (setup), Low . benefiting teams,
Code Assistant or test most code). quality depends improving rapid|
P ' on prompt). P g rapidly.
Proven concept -
Semantic Medium (need | . Excellent keyword-driven
. e High (assembles tests . :
Mapping to existing from blocks) (leverages well- frameworks mirror this, Al
Functions library). ’ tested functions). | just automates the
matching.
. N/A (no scripts to
Autonomous High (R&D :z:[/irlﬁlt?(l)lr{ar (writes & maintain, but Experimental — promising
Test Agent needed). y agent logic needs | but not yet mainstream.

Insights: Most organizations can start today with Approach 1 or 3. If you have a solid automation framework,
Semantic Mapping (3) piggybacks on it to boost productivity with moderate effort. If you're building from scratch
or want something more generic, NLP Template generation (1) will quickly pay off by eliminating drudge work.
Generative Al (2) is gaining traction fast — it's worth piloting for your team to see how accurately it can produce
your test code; many have been pleasantly surprised by how well it handles the job of a junior automation
engineer. Approach 4, the Autonomous Agent, is still on the horizon, but keep an eye on it as the technology
matures - it could fundamentally change how we view test automation in the coming years (AccleroTech is
actively exploring this frontier as part of our Al labs). In all cases, using Al here means faster script development,
quicker regression turnarounds, and a more agile testing cycle. It bridges the gap between “written tests” and
“executable tests” which is often a bottleneck in continuous delivery.

© 2025 Acclero Technologies Pvt Ltd

Page 9 of 13

Accelerating Productivity in Software Testing with Al-First Approaches — White Paper by AccleroTech

7. Use Case 4: Maintenance of Automated Test Scripts

Challenge: Applications change and so do the BDD scenarios (as seen in Use Case 2). These changes demand
updates not only to feature files but also to the automated test scripts (step definitions, page objects, etc.)
that execute them. For instance, if a field’s name changes in the BDD and in the application, the automation
code locator must change too. Or if a scenario is reworded, the step definition regex might not match
anymore. Keeping test scripts in sync with evolving tests and Ul is a major maintenance effort. Additionally,
automated tests can start failing due to application changes (element IDs updated, new page flows) or
environment issues. Test engineers spend considerable time debugging failures to identify if the issue is in the
test script (false failure) or in the application. In summary: maintaining script code - fixing broken selectors,
updating assertions, adjusting to new workflows - is a time sink that we want to minimize through Al.

Al-First Solution: Introduce Al/ML capabilities to make test scripts self-maintaining and resilient. This
involves using “self-healing” automation tools that automatically find alternative locators or adjust waits when
a Ul changes, Al assistants that suggest code changes when tests fail (like a smart troubleshooting buddy),
and analytics that optimize the test suite to remove redundancy or flag flaky tests. Over time, the automation
codebase evolves with minimal manual intervention — Al helps fix tests when things break and even prevents
certain breaks from occurring.

Suggested Approaches:

Approach

Impact on
Maintenance

Ease of

Long-Term Benefit

Implementation

fixes.

Self-Healing Ul locator and timing | Greatly reduces Moderate — High — tests become
Scripts issues auto-fixing manual fixes for configure tool in resilient to Ul
(Runtime ML) during runs. minor Ul changes. | framework. evolutions.
Identifying & Speeds up fixing High — semi-
Al Refactoring | proposing code broken tests; Moderate — automates
Suggestions changes when tests enforces integrate into CI. maintenance tasks,
break. consistency. saves engineer time.
. Removing redundant | Prevents Medium - keeps
Test Suite) : . i
. . . or obsolete tests; maintenance of Moderate — run suite healthy; not
Optimization . : : . : . .
. recommending new pointless tests; offline analysis. real-time but periodic
(Analysis) : .
ones. ensures focus. quality gains.
. Turns recurring Very High — suite
Continuous
. Learning patterns to issues into non- High - requires gets smarter and
Learning from dict/fix fail :) . q q ble with
Failures predict/fix failures. issues; preemptive ata and ML setup. | more stable wit

time.

Insights: Self-healing (Approach 1) is a quick win for teams facing Ul churn - it’s often available as a plug-and-
play addition and immediately cuts down maintenance on locators and waits. Al suggestions (Approach 2) work
well if you integrate them into your dev process; they're like having an assistant watch over your shoulder to catch
mistakes, and are fairly straightforward to pilot with existing Al coding tools. Test optimization (Approach 3)
might be overlooked, but it’s crucial for long-lived projects — an annual or per-release Al audit of tests can pay
dividends in reduced bloat and maintenance. Learning systems (Approach 4) are a bigger venture, but as your
test suite and team mature, investing in this can drastically reduce firefighting; it's how you keep maintenance
effort nearly flat, even as application complexity grows. All these approaches align with an Al-First philosophy:

© 2025 Acclero Technologies Pvt Ltd

Page 10 of 13

Accelerating Productivity in Software Testing with Al-First Approaches — White Paper by AccleroTech

using data and machine intelligence to continuously improve the robustness of your test automation, thereby
protecting your productivity gains from earlier phases (no point generating tests quickly if they then break often -
these approaches ensure the automation stays effective).

8. Use Case 5: Automation Test Failure Analysis (Intelligent Triage)

Challenge: In any sizable test suite, some tests will fail in each run. The challenge is quickly determining why
they failed. Was it a genuine application bug? A test script issue? An environment glitch? When dozens or
hundreds of tests run, triaging failures can bog the team down. Traditional methods involve manually reading
through logs, error messages, and tracing them to recent changes — a time-consuming process. In BFSI, where
systems are integrated and complex, a single failure could have multiple root causes interacting. Moreover,
repetitive analysis happens when the same types of failures occur run after run (flaky tests, known
environment issues), eating away at productivity.

Al-First Solution: Apply Al/ML to analyze test failures, group similar ones, identify root causes, and even
predict failures before they occur. Essentially, have an Al co-pilot in the results analysis phase: it can cluster
failures by symptom, classify them (e.g., known vs new issue), and highlight the most likely cause for each
group. Over time, it learns from prior incidents and can filter out noise (like flaky test failures) and focus
attention on real, novel problems. This means testers spend less time diagnosing and more time fixing or

reporting issues.

Suggested Approaches:

Approach

Primary Benefit

Triaging Speed

Setup Complexity

Novel Issue Handling

Low — easy to

Good at highlighting

Failure Groups similar High — simplifies | . :
. : . implement patterns, but doesn't
Clustering failures for 1 fix. many to one. . . .
clustering. explain cause by itself.
Learns known causes well;
Cause Identifies type of | High — immediate | Medium - needs | new types start

Based Assistant

to solve current
problems.

human debugging
with Al help.

gathering needed.

Classification issue (who fixes). | cause tags. training/rules. unclassified but can be
learned.
- . Great for catching new
o Anticipates Proactive — . . ;
Predictive : High — advanced | spikes or trends; less
. failures & prevents or . S
Analytics . o modeling. about explaining individual
anomalies. prioritizes. .
failures.
Leverages history | Medium — faster 2T Sl el [EE
Knowledge- 9 y Medium - data happened before; if truly

novel, just says “no known
info”.

Insights: Clustering (Approach 1) is a quick win for any team drowning in failure logs — it's relatively simple to set
up and yields immediate clarity, so we often recommend starting there. Classification (Approach 2) adds another
layer by telling you what bucket a failure falls into; it's very helpful once you have enough past data, and it can
piggyback on cluster results for initial labeling too. Prediction and anomaly detection (Approach 3) are more
advanced but can be game-changers for continuous testing at scale — they transform your approach from

reactive to proactive.

© 2025 Acclero Technologies Pvt Ltd

Page 11 of 13

Accelerating Productivity in Software Testing with Al-First Approaches — White Paper by AccleroTech

For many, implementing even basic anomaly alerts (like “we usually have 2 failures, now we have 10”) is a major
step forward in not missing critical signals. Knowledge assistants (Approach 4) harness a resource you already
own — your team’s collective experience — and ensures even newbies can diagnose like pros; they are moderately
easy to set up with modern NLP techniques and can be incrementally improved. All these approaches aim at the
same outcome: significantly reduce the time and brainpower spent on analyzing test failures, so that effort can
instead go into fixing underlying problems or building new features. In environments where every minute counts
(like trading systems uptime or quick deployment cycles in fintech), the combination of these Al techniques
means faster recovery from failures and more reliable delivery.

9. Summary and Benefits

Al-First Testing = High-Speed, High-Quality Software Delivery. This whitepaper has highlighted how artificial
intelligence and machine learning can empower nearly every stage of the software testing lifecycle — from
creating test cases out of thin air (user stories) to keeping those tests in lockstep with change, to writing and
maintaining the code that runs them, and finally to deciphering test results. By adopting these approaches,
organizations can achieve:

e Dramatic Productivity Gains: Teams can go from manual to automated test design, slashing days of
effort to minutes. Maintenance that once swallowed 30%+ of QA time can be largely automated.
Imagine a regression suite update that used to take a week now done in an afternoon - that’s the
power of Al in testing. Faster testing cycles mean more frequent releases and the ability to respond
swiftly to changing requirements or urgent fixes.

e Cost Reduction: Many approaches we discussed leverage open-source tools or in-house Al, avoiding
the need for expensive commercial testing solutions. Moreover, by saving engineering hours (a costly
resource), direct cost savings are realized. For example, if Al reduces test creation effort by 50%, a
team of 4 can do the work of 8 — effectively doubling output without doubling costs. Over a year, this
can translate to hundreds of thousands of dollars saved in large projects.

e Improved Quality and Coverage: Al can design tests that humans might overlook (bringing in edge
cases via generation or reusing past issue scenarios). It also ensures tests evolve with the application,
preventing gaps in coverage as systems change. All this leads to higher quality software — fewer bugs
escaping to production — which for BFSI means greater customer trust, regulatory compliance, and
avoidance of costly incidents.

e Agility and Future-Readiness: Embracing Al in testing positions an organization for the future. Testing
becomes more adaptive — whether it's dealing with new technologies (Al agents can learn new
interfaces quickly) or scaling to huge systems (Al helps manage complexity). As Al tools evolve (e.g.,
more advanced autonomous test agents), those already on the Al-first path will seamlessly integrate
them. It's a hedge against the increasing complexity of software; you have Al on your side to tackle
challenges head-on.

e Tester Morale and Innovation: Automating the drudge work of testing frees human testers to do what
they do best — critical thinking, exploratory testing, devising clever test scenarios, and contributing to
product improvements. This boosts job satisfaction and allows teams to innovate in testing techniques
rather than being stuck in maintenance mode. Your QA becomes a clever, forward-looking group rather
than a reactive one.

© 2025 Acclero Technologies Pvt Ltd Page 12 of 13

Accelerating Productivity in Software Testing with Al-First Approaches — White Paper by AccleroTech

From the five use cases, some overarching themes emerge: start small, leverage what you have, and
iteratively enhance with Al. You don't need a giant Al overhaul upfront. Pick a use case that pains you the
most (maybe writing test cases or debugging failures) and introduce one of these Al techniques. See the result
— typically a quick win — then expand. The approaches are not mutually exclusive; in fact, they reinforce each
other. For instance, generating BDD scenarios (Use Case 1) combined with generating scripts (Use Case 3) can
fully automate test case creation end-to-end. Add self-healing (Use Case 4) and those tests rarely break. Then
with failure analysis Al (Use Case 5), any breakages are diagnosed instantly. Meanwhile, requirement changes
flow through to tests via Use Case 2's Al. In the ideal state, much of the testing pipeline flows autonomously
with minimal friction, orchestrated by Al, under the guidance of your QA team.

Additionally, to protect proprietary tests and intellectual property, organizations must ensure data privacy
when using general-purpose LLMs. This involves anonymizing data, using secure transmission channels, and
employing encryption techniques. Leveraging private LLMs or on-premise Al solutions can mitigate the risk of
IP leakage. Strict access controls and regular audits of Al models are essential to safeguard intellectual
property while benefiting from advanced Al capabilities.

Obviously, there are so many other aspects (such as Security, Performance, any other Non-Functional
dimensions) that are important but have not been covered in this whitepaper. We think that they would need
their separate documents, for us to do proper justice to them.

Lastly, it's important to note that an Al-First approach in testing doesn’t eliminate the need for human insight
- it actually amplifies it. Your team’s domain knowledge and risk intuition guide where Al is applied and how
to validate its outputs. Human-in-the-loop is crucial in Al-First software testing, ensuring that Al-generated
test cases, automated script maintenance, and failure analysis are validated and refined by expert testers.
What Al does is handle scale, speed, and pattern recognition far beyond human capability. When properly
combined, you get the best of both worlds: the creativity and judgment of experts, and the relentless efficiency
of Al. The BFSI case studies we peppered throughout demonstrate that these aren't just theories — banks,
insurers, and FinTech companies are already reaping benefits: faster test cycles enabling weekly (or daily)
releases, higher confidence in software quality even as headcounts stay flat, and innovation in services
because teams have more freedom to experiment once Al shoulders routine tasks.

In summary, the journey to Al-First testing is a journey towards Accelerating Productivity — the very core of
AccleroTech’s mission. With open-source tools and the strategies laid out, the barrier to entry is lower than
ever. Organizations that seize this moment to infuse Al into their QA processes will not only cut costs and
work smarter, they'll also deliver superior products — faster. And in industries where trust and timing are
everything (like banking and finance), that can make all the difference

10. Next Steps

Let’s build your Al-first QA pipeline. Schedule a quick discovery session by sending an email to
info@acclerotech.com

ACCLERZTECH

© 2025 Acclero Technologies Pvt Ltd Page 13 of 13

mailto:info@acclerotech.com

