
© 2025 Acclero Technologies Pvt Ltd

ACCELERATING PRODUCTIVITY IN
SOFTWARE TESTING WITH AI‑FIRST
APPROACHES

© 2025 Acclero Technologies Pvt Ltd Page 2 of 13

 Accelerating Productivity in Software Testing with AI-First Approaches – White Paper by AccleroTech

REFERENCES

1. CONSORTIUM FOR IT SOFTWARE QUALITY (CISQ), (COST OF POOR SOFTWARE QUALITY IN THE US, 2020)

2. HARNESS, 2024 SOFTWARE FAILURE SENTIMENT REPORT (52% OF US CONSUMERS DIRECTLY IMPACTED BY OUTAGES;
50% REPORT LOSS OF TRUST IN COMPANIES AFTER FAILURES)

3. CAPGEMINI & SOGETI WORLD QUALITY REPORT (2010–2015 DATA) – (QA BUDGET AS PERCENTAGE OF IT SPEND RISING
FROM 18% TO 35%)

4. CAPGEMINI, SOGETI, AND OPENTEXT. WORLD QUALITY REPORT 2023-24. OCTOBER 2024. (PRESS RELEASE: “68% OF

ORGANIZATIONS NOW UTILIZING GEN AI TO ADVANCE QUALITY ENGINEERING.”)

5. CAPGEMINI AND MICRO FOCUS. WORLD QUALITY REPORT 2021-22. 2022. (SURVEY FINDINGS ON AI ADOPTION AND

PRODUCTIVITY GAINS IN QUALITY ENGINEERING.)

6. COPILOT4DEVOPS. “AI TEST CASE GENERATION: TOP TOOLS, BENEFITS, CASE STUDY.” COPILOT4DEVOPS BLOG, 2023.

(CASE STUDY SHOWING 100 HOURS/$6000 SAVED BY AI-GENERATED TEST CASES FOR 100 USER STORIES.)

7. ATLASSIAN COMMUNITY. “6 AI‑POWERED TESTING TOOLS FOR JIRA.” ATLASSIAN APP CENTRAL, APRIL 9, 2025.

(OVERVIEW OF MARKETPLACE APPS THAT GENERATE TEST CASES AND AUTOMATE TESTING USING AI WITHIN JIRA.)

8. CIRCLECI – E. ANWAR. “USE AI TO RESOLVE CI TEST FAILURES WITH ZERO GUESSWORK.” CIRCLECI BLOG, MAY 1, 2025.

(DISCUSSION OF AI TECHNIQUES TO AUTOMATICALLY CLASSIFY AND TROUBLESHOOT CONTINUOUS INTEGRATION TEST
FAILURES IN A CI/CD PIPELINE.)

© 2025, Acclero Technologies Pvt Ltd

Commissioned by

Acclero Technologies Pvt Ltd (AccleroTech)

www.acclerotech.com

info@acclertotech.com

Co-Authored by

Nadeem Khan, Chief Architect LinkedIn

Bhupendra Chepe, Head of Research LinkedIn

Nilesh Pathak, Head of Delivery LinkedIn

LEGAL DISCLAIMER: THE INFORMATION CONTAINED IN THIS WHITE PAPER IS PROVIDED FOR GENERAL INFORMATIONAL
PURPOSES ONLY AND IS NOT INTENDED AS LEGAL, FINANCIAL, OR PROFESSIONAL ADVICE. ACCLEROTECH MAKES NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, ABOUT THE COMPLETENESS OR ACCURACY OF THE
INFORMATION. ANY ACTION YOU TAKE BASED ON THE CONTENT OF THIS DOCUMENT IS STRICTLY AT YOUR OWN RISK.
ACCLEROTECH WILL NOT BE LIABLE FOR ANY LOSSES OR DAMAGES IN CONNECTION WITH THE USE OF THIS WHITE PAPER.
ALL PRODUCT AND COMPANY NAMES MENTIONED HEREIN ARE TRADEMARKS OR REGISTERED TRADEMARKS OF THEIR
RESPECTIVE OWNERS. REFERENCE TO ANY THIRD-PARTY PRODUCTS OR SERVICES IS FOR ILLUSTRATIVE PURPOSES ONLY
AND DOES NOT CONSTITUTE AN ENDORSEMENT OR RECOMMENDATION BY ACCLEROTECH.

http://www.acclerotech.com/
mailto:info@acclertotech.com
https://www.linkedin.com/in/nadeem-khan-62875a20/
https://www.linkedin.com/in/bhupendra-chepe/
https://www.linkedin.com/in/nileshpathak2001/

© 2025 Acclero Technologies Pvt Ltd Page 3 of 13

 Accelerating Productivity in Software Testing with AI-First Approaches – White Paper by AccleroTech

EXECUTIVE SUMMARY

Poor software quality is extremely costly, both in direct financial terms and in harder-to-measure intangible

ways. Studies have quantified the economic damage of software failures and defects: for example, in the

United States alone, software bugs and failures resulted in an estimated $2.08 trillion of losses in

2020. Surveys from 2024 show that 52% of US consumers are directly impacted by such outages and about

50% of them report loss of trust in companies after such failures.

And hence, software testing is a major investment for organizations worldwide, consuming substantial time,

resources, and budget. Industry surveys show that QA and testing activities account for a significant portion of

IT spend – rising from around 18% of IT budgets in 2010 to roughly 35% by mid-2010s as software quality

became a higher priority. In practical terms, this means nearly one-third of software development effort

globally is dedicated to testing.

The financial scope is enormous: the software testing market (tools, services, and labor) was valued at ~$50

billion USD in 2023 and continues to grow annually. Large enterprises often employ hundreds or thousands of

QA engineers, and development teams collectively spend millions of hours on test design, execution, and

defect fixing each year. This worldwide effort is driven by the need to ensure software reliability, security, and

performance before release. Yet despite this heavy investment, testing often remains a bottleneck in delivery

timelines, indicating that efficiency has ample room for improvement.

This whitepaper highlights how artificial intelligence and machine learning can “Accelerate Productivity” at

nearly every stage of the software testing lifecycle – from creating test cases out of thin air (user stories) to

keeping those tests in lockstep with change, to writing and maintaining the code that runs them, and finally to

deciphering test results. The purpose of this whitepaper is to provide a blueprint for engineering leaders and

QA practitioners on how to utilize AI-first approaches in testing to reduce manual effort, shorten release cycles,

and cut costs. It emphasizes the urgent need for faster and more intelligent testing processes in today's fast-

paced software environment, particularly within the BFSI sector, where rigorous testing is essential due to

complex systems and regulations.

In short, this whitepaper shows different ways to achieve the equation, AI-First Testing = High-Speed, High-

Quality Software Delivery. This results in…

• Accelerating Productivity Gains with reduction in efforts and shorter schedules

• Significant Cost Reduction in team efforts and tool licenses

• Improved Quality and Coverage for complex and large regression suites

• Increased Agility and Future-Readiness of the team as well as practices followed by the team

• Higher team Morale & Innovation as the engineers can re-double focus on higher cognition pursuits

© 2025 Acclero Technologies Pvt Ltd Page 4 of 13

 Accelerating Productivity in Software Testing with AI-First Approaches – White Paper by AccleroTech

Glossary

AI-First Approach: A methodology that prioritizes the use of artificial intelligence in processes to enhance

productivity and efficiency.

Behavior-Driven Development (BDD): A software development process that involves creating simple scenarios

on how an application should behave from the end user's perspective.

Continuous Integration (CI): A development practice where developers integrate code into a shared repository

frequently, leading to multiple integrations per day.

Generative AI: A type of artificial intelligence that can generate new content, such as text, images, or code,

based on the data it has been trained on.

Large Language Model (LLM): A type of artificial intelligence model that is trained on vast amounts of text

data to understand and generate human language.

Machine Learning (ML): A subset of artificial intelligence that involves the use of algorithms and statistical

models to enable computers to improve their performance on a task through experience.

Natural Language Processing (NLP): A field of artificial intelligence that gives machines the ability to read,

understand, and derive meaning from human languages.

Regression Testing: A type of software testing that ensures that recent code changes have not adversely

affected existing features.

Self-Healing Scripts: Automation scripts that can automatically adjust to changes in the application under

test, such as changes in UI elements or workflows.

Semantic Mapping: A technique that involves mapping data to a semantic model to ensure consistency and

understanding across different systems.

Test Automation: The use of special software to control the execution of tests and compare the actual

outcomes with predicted outcomes.

Flaky Test Failures: Test failures that occur inconsistently, often due to timing issues, environment conditions,

or other non-deterministic factors.

Compute: Refers to the computational power required to perform tasks, often measured in terms of

processing speed, memory usage, and efficiency.

Traceability Matrix: A tool used to ensure that all requirements defined for a system are tested in the test

protocols. It maps and traces user requirements with test cases.

Knowledge Graph: A structured representation of knowledge that enables reasoning and querying over

complex data relationships.

NLP Parsing: The process of analyzing and extracting meaningful information from natural language text

using algorithms and models.

© 2025 Acclero Technologies Pvt Ltd Page 5 of 13

 Accelerating Productivity in Software Testing with AI-First Approaches – White Paper by AccleroTech

WHITE PAPER

1. About AccleroTech

AccleroTech is a pioneering AI-First software solutions company on a mission to “Accelerate Productivity” for

global businesses. We specialize in infusing artificial intelligence into every facet of software engineering to

deliver smarter, faster, and more cost-effective outcomes. Our mantra – Accelerating Productivity with AI-First

Solutions – drives us to constantly innovate and adopt cutting-edge, open-source technologies that future-

proof our clients’ software development lifecycle. By leveraging AI and automation, we reduce costs, save

time, and boost quality for our customers, all while staying true to our ethos of openness, security, and

collaboration. AccleroTech’s expertise spans Agile Quality Engineering, intelligent automation, and the

Microsoft Power Platform, all united by an AI-driven mindset. We pride ourselves in empowering teams (our

own and our clients) with AI tools and AI-trained talent to achieve results that were previously unimaginable.

Since our inception, we have helped organizations (especially in the Banking, Financial Services, and Insurance

— BFSI — sector) transform their software testing and QA processes. We always choose an AI-First approach:

from automated test design to self-healing test execution, we harness AI to do the heavy lifting so that human

engineers can focus on higher-value activities. What sets AccleroTech apart is not only our technical prowess,

but also our commitment to open-source, future-proof approaches. We believe in using open platforms and

frameworks to avoid vendor lock-in and keep costs down, while delivering scalable solutions that stand the

test of time. In short, AccleroTech accelerates software quality and productivity by uniting human innovation

and artificial intelligence.

2. Why We Wrote This Whitepaper?

In today’s fast-paced software world, quality assurance can no longer afford to be a bottleneck. Testing must

be fast, intelligent, and cost-effective. We at AccleroTech prepared this whitepaper to share our AI-driven

blueprint for turbocharging software testing productivity. Our goal is to show engineering leaders and QA

practitioners how an AI-First approach in testing can dramatically reduce manual effort, shorten release

cycles, and cut costs – all using readily available technology (often open-source).

This whitepaper is part of AccleroTech’s thought leadership on “Accelerating Productivity”. We chose to focus

on software testing because it’s a domain ripe for disruption through AI. Traditional testing is labor-intensive,

slow, and expensive – challenges that are acute in the BFSI sector where complex systems and stringent

regulations demand extensive testing. By adopting AI and machine learning in strategic parts of the testing

lifecycle, organizations can achieve more with less. Our clients have asked: How can we keep up with rapid

development without sacrificing quality? How do we reduce testing costs while covering ever-growing

requirements? We believe AI is the answer.

This document consolidates our research and hands-on experience with AI in testing. We delve into five key

use cases in the testing process where AI can make a game-changing impact (from generating tests from

requirements to analyzing test failures). For each, we outline practical approaches – emphasizing open-source

tools and techniques that don’t require hefty licensing fees – that deliver measurable improvements in speed

© 2025 Acclero Technologies Pvt Ltd Page 6 of 13

 Accelerating Productivity in Software Testing with AI-First Approaches – White Paper by AccleroTech

and productivity. We also provide real-world examples, especially in BFSI, to demonstrate how these

approaches work in practice and the kind of benefits they yield.

Why now? Because AI in QA has moved from theory to reality. Industry reports show that organizations are

embracing AI in quality engineering at an unprecedented rate. According to the World Quality Report 2024, 68%

of organizations are now utilizing generative AI to advance quality engineering, with test automation being

the top area of impact. In our own projects, we have seen AI reduce test creation effort by over 50% and

maintenance effort by as much as 80%. By sharing these insights, AccleroTech aims to help more

organizations ride this wave and navigate the practical steps to implement AI in their testing process.

In short, we wrote this whitepaper to educate and inspire: to show what’s possible with an AI-First approach to

testing, to highlight the productivity gains and cost savings, and to cement the idea that the future of testing is

not just faster or cheaper – it’s smarter. With this knowledge, we hope your organization can embark on its

own journey to create a high-velocity, AI-augmented testing practice. AccleroTech stands ready as a partner in

this journey, and in the following pages, you’ll discover why.

3. AI-First Software Testing Use Cases

In this whitepaper, we explore five critical use cases in software testing where AI can be applied to

significantly enhance productivity and efficiency. These use cases represent common challenges faced during

the testing lifecycle, and for each, we present AI-centric solutions. Below is an overview of the Use Cases

covered:

Use Case 1: User Story to BDD Feature File Generation – Using AI to convert requirements (user stories)

directly into Behavior-Driven Development (BDD) scenarios. This addresses the challenge of creating test

cases from specs, accelerating the test design phase.

Use Case 2: Maintenance of Regression BDD Files – Applying AI to keep existing BDD feature files in sync with

evolving user stories and requirements. The goal is to automate test case updates as software behavior

changes, preserving alignment with current functionality.

Use Case 3: BDD Feature File to UI Automation Script Generation – Leveraging AI to generate actual UI test

automation scripts from BDD scenarios. This deals with writing the code (e.g., Selenium, Appium scripts) for

tests, dramatically speeding up the automation implementation.

Use Case 4: Maintenance of Automated Test Scripts – Using AI to maintain and update test scripts when the

application under test changes or when BDD scenarios are modified. This includes self-healing tests and

intelligent refactoring to reduce the maintenance burden over time.

Use Case 5: Automation Test Failure Analysis (AI/ML) – Deploying AI/ML to analyze test execution results

and failures. This involves clustering failure patterns, pinpointing root causes, and even predicting failures,

thereby making triage faster and more effective.

Each use case corresponds to a stage in the testing process: from design (use cases 1 and 2) to development

of tests (3 and 4) to execution and analysis (5). By addressing all these stages, an organization can build an

end-to-end AI-augmented testing pipeline. Importantly, these use cases are modular – you can adopt one or

two to start (whatever solves your most pressing issues), and then gradually implement others to compound

the benefits.

© 2025 Acclero Technologies Pvt Ltd Page 7 of 13

 Accelerating Productivity in Software Testing with AI-First Approaches – White Paper by AccleroTech

In the next sections, we dive into the details of each use case. For every use case, we outline the key

challenge, the AI-First solution, and suggest multiple approaches you can take. We also provide a

comparative table for each use case, summarizing how, for each use case, the approaches stack up with each

other based on various parameters. For each of the use cases, we have also included some insights that will

help you evaluate which approaches align best with your organization’s needs and capabilities.

4. Use Case 1: User Story to BDD Feature File Generation

Challenge: Writing test scenarios from scratch based on user stories or requirements can be slow and

inconsistent. Often, business analysts create user stories, and QA must manually translate them into BDD

feature files (using Gherkin syntax with Given/When/Then). This manual step can lag behind, causing testing

to start late, and may result in missing or misunderstood scenarios.

AI-First Solution: Use Natural Language Processing (NLP) and Generative AI to automatically generate BDD

feature files from user story text. This ensures immediate creation of test scenarios as soon as requirements

are available, jump-starting the testing process and enforcing consistency.

Suggested Approaches:

Each of these approaches can drastically reduce the manual effort of test scenario creation, but they differ in

setup effort, flexibility, and long-term payoff. The table below compares them:

Approach Initial Effort Speed of Output Cost Future-Proofing

Template NLP
Parsing

Moderate –
create & tune
rules initially.

Instant generation
after setup.

Low (open-
source
libraries).

Good for consistent story
patterns; needs updates if
story style changes.

Pre-trained
LLM
Generation

Low – quick to
set up prompts.

Instant on-demand
(seconds/story).

Low (use local
open model).

Highly adaptable to any
phrasing; improves as
models evolve.

Custom-
Trained ML
Model

High – data prep
& training
needed.

Instant after training.
Medium
(compute for
training).

Excellent alignment with
domain; model learns &
improves with more data.

Semantic
Reuse

Moderate – set
up search index.

Instant suggestions.
Low (uses
existing
assets).

Leverages proven
scenarios; very effective as
repository grows.

Insights: If your team has very well-structured requirements and limited upfront AI expertise, NLP Parsing

(Approach 1) might be a quick win. If you want out-of-the-box results and have the compute, Generative LLM

(Approach 2) offers fast benefits. For large organizations with lots of historical data, investing in a Custom Model

(Approach 3) or Semantic Reuse system (Approach 4) will yield compounding returns and capture domain

wisdom. In practice, a combination can be used (e.g., use Approach 4 first to get scenarios, then Approach 2 to fill

any gaps). All approaches are feasible with open-source tech, allowing you to experiment without heavy costs.

© 2025 Acclero Technologies Pvt Ltd Page 8 of 13

 Accelerating Productivity in Software Testing with AI-First Approaches – White Paper by AccleroTech

5. Use Case 2: Maintenance of Regression BDD Feature Files

Challenge: Over a product’s life, requirements change – and tests must change with them. In BDD, that means

feature files need updates when user stories are modified or when acceptance criteria evolve. Manually

hunting through dozens of feature files to adjust steps, add new scenarios, or remove obsolete ones is error-

prone and time-consuming. Often some tests fall out-of-sync, leading to outdated tests that either fail

unnecessarily or miss covering new logic. Particularly in BFSI, frequent policy or regulation changes can make

maintaining test cases a daunting ongoing task.

AI-First Solution: Use AI to automatically detect changes in requirements and propagate those changes to the

BDD feature files. The idea is to keep the test specification “living” alongside the requirements. Approaches

include intelligent differencing, natural language updates using LLMs, traceability matrices with AI, and

knowledge-driven rule updates. These ensure that as your application changes, your BDD scenarios update

semi-autonomously, preserving the integrity of your regression suite with minimal manual effort.

Suggested Approaches:

Approach Setup Effort Handling Changes Maintenance Cost Adaptability

Change
Detection
Scripts

Moderate

Automated, for
defined change
types (values,
additions).

Low – once built,
little ongoing cost.

Adapts quickly to
incremental changes; needs
new rules for new patterns.

LLM-Assisted
Refactoring

Low
On-demand natural
language updates;
very flexible.

Low-Med – minimal
aside from model
usage.

Highly adaptable to varied
changes in wording or logic;
relies on AI quality.

AI Traceability
Matrix

Moderate
Auto-identifies
impacted tests;
suggests additions.

Low – mostly
automated alerts.

Very adaptive – catches
anything linked semantically;
requires maintaining trace
links.

Knowledge
Graph
Reasoning

High

Systematically
ensures all rules
have tests; powerful
logic.

Med – needs up-
keep of rules
model.

Extremely adaptable to
complex logic changes;
future-proof but initial
overhead.

Insights: For teams starting out, LLM assistance (Approach 2) offers a quick boost in ease of updating tests,

especially for textual or value changes, with minimal setup. Automated differencing (Approach 1) is great for

straightforward rule updates (like thresholds, optional steps) and is easy to implement incrementally (start with

the most common change types). Larger enterprises with established processes may benefit from AI traceability

(Approach 3) to enforce coverage, and those in heavily rule-driven environments (like banks or insurers) could

consider the knowledge graph (Approach 4) for a long-term robust solution. Often, a combination is ideal: e.g.,

use traceability to identify changes and LLM to execute the updates. All approaches share a common benefit –

they significantly reduce the manual labor and delay in updating tests when requirements change, thus keeping

regression suites reliable and relevant.

© 2025 Acclero Technologies Pvt Ltd Page 9 of 13

 Accelerating Productivity in Software Testing with AI-First Approaches – White Paper by AccleroTech

6. Use Case 3: BDD Feature File to UI Automation Test Script Generation

Challenge: Writing the actual automation code to execute test scenarios on the application’s UI is a labor-

intensive step. Testers or developers must write step definitions or scripts (in Selenium, Cypress, etc.)

corresponding to each BDD step. This can be slow, especially when dealing with a large number of scenarios.

It often involves repetitive coding (e.g., locating UI elements, performing clicks and data entry, asserting

results). For teams practicing BDD, the lag between having scenarios ready and getting runnable automated

tests can impede continuous testing. Moreover, inconsistencies or human errors in script writing can introduce

flakiness.

AI-First Solution: Automatically generate the UI test scripts from the BDD feature files using AI, drastically

reducing the time needed to have executable tests. Essentially, let AI be the translator from plain-language

scenarios to code. By doing so, teams can move from “Given/When/Then” written in English to actual test

execution much faster, enabling a near real-time testing pipeline from requirements to results.

Suggested Approaches:

Approach Dev Effort Automation Speed-Up Maintainability Maturity

Structured NLP
to Code

Medium (one-
time template
creation).

Very High (bulk code
generation in seconds).

Good (consistent
code, but update
templates if app
changes).

Proven – in use in many
BDD frameworks via
plugins.

Generative AI
Code Assistant

Medium
(setup), Low
per test.

Very High (AI writes
most code).

Fair (review
needed; code
quality depends
on prompt).

Emerging – already
benefiting teams,
improving rapidly.

Semantic
Mapping to
Functions

Medium (need
existing
library).

High (assembles tests
from blocks).

Excellent
(leverages well-
tested functions).

Proven concept –
keyword-driven
frameworks mirror this, AI
just automates the
matching.

Autonomous
Test Agent

High (R&D
needed).

Potentially
Revolutionary (writes &
runs itself).

N/A (no scripts to
maintain, but
agent logic needs
upkeep).

Experimental – promising
but not yet mainstream.

Insights: Most organizations can start today with Approach 1 or 3. If you have a solid automation framework,

Semantic Mapping (3) piggybacks on it to boost productivity with moderate effort. If you’re building from scratch

or want something more generic, NLP Template generation (1) will quickly pay off by eliminating drudge work.

Generative AI (2) is gaining traction fast – it’s worth piloting for your team to see how accurately it can produce

your test code; many have been pleasantly surprised by how well it handles the job of a junior automation

engineer. Approach 4, the Autonomous Agent, is still on the horizon, but keep an eye on it as the technology

matures – it could fundamentally change how we view test automation in the coming years (AccleroTech is

actively exploring this frontier as part of our AI labs). In all cases, using AI here means faster script development,

quicker regression turnarounds, and a more agile testing cycle. It bridges the gap between “written tests” and

“executable tests” which is often a bottleneck in continuous delivery.

© 2025 Acclero Technologies Pvt Ltd Page 10 of 13

 Accelerating Productivity in Software Testing with AI-First Approaches – White Paper by AccleroTech

7. Use Case 4: Maintenance of Automated Test Scripts

Challenge: Applications change and so do the BDD scenarios (as seen in Use Case 2). These changes demand

updates not only to feature files but also to the automated test scripts (step definitions, page objects, etc.)

that execute them. For instance, if a field’s name changes in the BDD and in the application, the automation

code locator must change too. Or if a scenario is reworded, the step definition regex might not match

anymore. Keeping test scripts in sync with evolving tests and UI is a major maintenance effort. Additionally,

automated tests can start failing due to application changes (element IDs updated, new page flows) or

environment issues. Test engineers spend considerable time debugging failures to identify if the issue is in the

test script (false failure) or in the application. In summary: maintaining script code – fixing broken selectors,

updating assertions, adjusting to new workflows – is a time sink that we want to minimize through AI.

AI-First Solution: Introduce AI/ML capabilities to make test scripts self-maintaining and resilient. This

involves using “self-healing” automation tools that automatically find alternative locators or adjust waits when

a UI changes, AI assistants that suggest code changes when tests fail (like a smart troubleshooting buddy),

and analytics that optimize the test suite to remove redundancy or flag flaky tests. Over time, the automation

codebase evolves with minimal manual intervention – AI helps fix tests when things break and even prevents

certain breaks from occurring.

Suggested Approaches:

Approach Focus
Impact on
Maintenance

Ease of
Implementation

Long-Term Benefit

Self-Healing
Scripts
(Runtime ML)

UI locator and timing
issues auto-fixing
during runs.

Greatly reduces
manual fixes for
minor UI changes.

Moderate –
configure tool in
framework.

High – tests become
resilient to UI
evolutions.

AI Refactoring
Suggestions

Identifying &
proposing code
changes when tests
break.

Speeds up fixing
broken tests;
enforces
consistency.

Moderate –
integrate into CI.

High – semi-
automates
maintenance tasks,
saves engineer time.

Test Suite
Optimization
(Analysis)

Removing redundant
or obsolete tests;
recommending new
ones.

Prevents
maintenance of
pointless tests;
ensures focus.

Moderate – run
offline analysis.

Medium – keeps
suite healthy; not
real-time but periodic
quality gains.

Continuous
Learning from
Failures

Learning patterns to
predict/fix failures.

Turns recurring
issues into non-
issues; preemptive
fixes.

High – requires
data and ML setup.

Very High – suite
gets smarter and
more stable with
time.

Insights: Self-healing (Approach 1) is a quick win for teams facing UI churn – it’s often available as a plug-and-

play addition and immediately cuts down maintenance on locators and waits. AI suggestions (Approach 2) work

well if you integrate them into your dev process; they’re like having an assistant watch over your shoulder to catch

mistakes, and are fairly straightforward to pilot with existing AI coding tools. Test optimization (Approach 3)

might be overlooked, but it’s crucial for long-lived projects – an annual or per-release AI audit of tests can pay

dividends in reduced bloat and maintenance. Learning systems (Approach 4) are a bigger venture, but as your

test suite and team mature, investing in this can drastically reduce firefighting; it’s how you keep maintenance

effort nearly flat, even as application complexity grows. All these approaches align with an AI-First philosophy:

© 2025 Acclero Technologies Pvt Ltd Page 11 of 13

 Accelerating Productivity in Software Testing with AI-First Approaches – White Paper by AccleroTech

using data and machine intelligence to continuously improve the robustness of your test automation, thereby

protecting your productivity gains from earlier phases (no point generating tests quickly if they then break often –

these approaches ensure the automation stays effective).

8. Use Case 5: Automation Test Failure Analysis (Intelligent Triage)

Challenge: In any sizable test suite, some tests will fail in each run. The challenge is quickly determining why

they failed. Was it a genuine application bug? A test script issue? An environment glitch? When dozens or

hundreds of tests run, triaging failures can bog the team down. Traditional methods involve manually reading

through logs, error messages, and tracing them to recent changes – a time-consuming process. In BFSI, where

systems are integrated and complex, a single failure could have multiple root causes interacting. Moreover,

repetitive analysis happens when the same types of failures occur run after run (flaky tests, known

environment issues), eating away at productivity.

AI-First Solution: Apply AI/ML to analyze test failures, group similar ones, identify root causes, and even

predict failures before they occur. Essentially, have an AI co-pilot in the results analysis phase: it can cluster

failures by symptom, classify them (e.g., known vs new issue), and highlight the most likely cause for each

group. Over time, it learns from prior incidents and can filter out noise (like flaky test failures) and focus

attention on real, novel problems. This means testers spend less time diagnosing and more time fixing or

reporting issues.

Suggested Approaches:

Approach Primary Benefit Triaging Speed Setup Complexity Novel Issue Handling

Failure
Clustering

Groups similar
failures for 1 fix.

High – simplifies
many to one.

Low – easy to
implement
clustering.

Good at highlighting
patterns, but doesn’t
explain cause by itself.

Cause
Classification

Identifies type of
issue (who fixes).

High – immediate
cause tags.

Medium – needs
training/rules.

Learns known causes well;
new types start
unclassified but can be
learned.

Predictive
Analytics

Anticipates
failures &
anomalies.

Proactive –
prevents or
prioritizes.

High – advanced
modeling.

Great for catching new
spikes or trends; less
about explaining individual
failures.

Knowledge-
Based Assistant

Leverages history
to solve current
problems.

Medium – faster
human debugging
with AI help.

Medium – data
gathering needed.

Excellent if similar issue
happened before; if truly
novel, just says “no known
info”.

Insights: Clustering (Approach 1) is a quick win for any team drowning in failure logs – it’s relatively simple to set

up and yields immediate clarity, so we often recommend starting there. Classification (Approach 2) adds another

layer by telling you what bucket a failure falls into; it’s very helpful once you have enough past data, and it can

piggyback on cluster results for initial labeling too. Prediction and anomaly detection (Approach 3) are more

advanced but can be game-changers for continuous testing at scale – they transform your approach from

reactive to proactive.

© 2025 Acclero Technologies Pvt Ltd Page 12 of 13

 Accelerating Productivity in Software Testing with AI-First Approaches – White Paper by AccleroTech

For many, implementing even basic anomaly alerts (like “we usually have 2 failures, now we have 10”) is a major

step forward in not missing critical signals. Knowledge assistants (Approach 4) harness a resource you already

own – your team’s collective experience – and ensures even newbies can diagnose like pros; they are moderately

easy to set up with modern NLP techniques and can be incrementally improved. All these approaches aim at the

same outcome: significantly reduce the time and brainpower spent on analyzing test failures, so that effort can

instead go into fixing underlying problems or building new features. In environments where every minute counts

(like trading systems uptime or quick deployment cycles in fintech), the combination of these AI techniques

means faster recovery from failures and more reliable delivery.

9. Summary and Benefits

AI-First Testing = High-Speed, High-Quality Software Delivery. This whitepaper has highlighted how artificial

intelligence and machine learning can empower nearly every stage of the software testing lifecycle – from

creating test cases out of thin air (user stories) to keeping those tests in lockstep with change, to writing and

maintaining the code that runs them, and finally to deciphering test results. By adopting these approaches,

organizations can achieve:

• Dramatic Productivity Gains: Teams can go from manual to automated test design, slashing days of

effort to minutes. Maintenance that once swallowed 30%+ of QA time can be largely automated.

Imagine a regression suite update that used to take a week now done in an afternoon – that’s the

power of AI in testing. Faster testing cycles mean more frequent releases and the ability to respond

swiftly to changing requirements or urgent fixes.

• Cost Reduction: Many approaches we discussed leverage open-source tools or in-house AI, avoiding

the need for expensive commercial testing solutions. Moreover, by saving engineering hours (a costly

resource), direct cost savings are realized. For example, if AI reduces test creation effort by 50%, a

team of 4 can do the work of 8 – effectively doubling output without doubling costs. Over a year, this

can translate to hundreds of thousands of dollars saved in large projects.

• Improved Quality and Coverage: AI can design tests that humans might overlook (bringing in edge

cases via generation or reusing past issue scenarios). It also ensures tests evolve with the application,

preventing gaps in coverage as systems change. All this leads to higher quality software – fewer bugs

escaping to production – which for BFSI means greater customer trust, regulatory compliance, and

avoidance of costly incidents.

• Agility and Future-Readiness: Embracing AI in testing positions an organization for the future. Testing

becomes more adaptive – whether it’s dealing with new technologies (AI agents can learn new

interfaces quickly) or scaling to huge systems (AI helps manage complexity). As AI tools evolve (e.g.,

more advanced autonomous test agents), those already on the AI-first path will seamlessly integrate

them. It’s a hedge against the increasing complexity of software; you have AI on your side to tackle

challenges head-on.

• Tester Morale and Innovation: Automating the drudge work of testing frees human testers to do what

they do best – critical thinking, exploratory testing, devising clever test scenarios, and contributing to

product improvements. This boosts job satisfaction and allows teams to innovate in testing techniques

rather than being stuck in maintenance mode. Your QA becomes a clever, forward-looking group rather

than a reactive one.

© 2025 Acclero Technologies Pvt Ltd Page 13 of 13

 Accelerating Productivity in Software Testing with AI-First Approaches – White Paper by AccleroTech

From the five use cases, some overarching themes emerge: start small, leverage what you have, and

iteratively enhance with AI. You don’t need a giant AI overhaul upfront. Pick a use case that pains you the

most (maybe writing test cases or debugging failures) and introduce one of these AI techniques. See the result

– typically a quick win – then expand. The approaches are not mutually exclusive; in fact, they reinforce each

other. For instance, generating BDD scenarios (Use Case 1) combined with generating scripts (Use Case 3) can

fully automate test case creation end-to-end. Add self-healing (Use Case 4) and those tests rarely break. Then

with failure analysis AI (Use Case 5), any breakages are diagnosed instantly. Meanwhile, requirement changes

flow through to tests via Use Case 2’s AI. In the ideal state, much of the testing pipeline flows autonomously

with minimal friction, orchestrated by AI, under the guidance of your QA team.

Additionally, to protect proprietary tests and intellectual property, organizations must ensure data privacy

when using general-purpose LLMs. This involves anonymizing data, using secure transmission channels, and

employing encryption techniques. Leveraging private LLMs or on-premise AI solutions can mitigate the risk of

IP leakage. Strict access controls and regular audits of AI models are essential to safeguard intellectual

property while benefiting from advanced AI capabilities.

Obviously, there are so many other aspects (such as Security, Performance, any other Non-Functional

dimensions) that are important but have not been covered in this whitepaper. We think that they would need

their separate documents, for us to do proper justice to them.

Lastly, it’s important to note that an AI-First approach in testing doesn’t eliminate the need for human insight

– it actually amplifies it. Your team’s domain knowledge and risk intuition guide where AI is applied and how

to validate its outputs. Human-in-the-loop is crucial in AI-First software testing, ensuring that AI-generated

test cases, automated script maintenance, and failure analysis are validated and refined by expert testers.

What AI does is handle scale, speed, and pattern recognition far beyond human capability. When properly

combined, you get the best of both worlds: the creativity and judgment of experts, and the relentless efficiency

of AI. The BFSI case studies we peppered throughout demonstrate that these aren’t just theories – banks,

insurers, and FinTech companies are already reaping benefits: faster test cycles enabling weekly (or daily)

releases, higher confidence in software quality even as headcounts stay flat, and innovation in services

because teams have more freedom to experiment once AI shoulders routine tasks.

In summary, the journey to AI-First testing is a journey towards Accelerating Productivity – the very core of

AccleroTech’s mission. With open-source tools and the strategies laid out, the barrier to entry is lower than

ever. Organizations that seize this moment to infuse AI into their QA processes will not only cut costs and

work smarter, they’ll also deliver superior products – faster. And in industries where trust and timing are

everything (like banking and finance), that can make all the difference

10. Next Steps

Let’s build your AI-first QA pipeline. Schedule a quick discovery session by sending an email to

info@acclerotech.com

mailto:info@acclerotech.com

